Objectives
In recent times, research activities in the areas of Opinion, Sentiment and/or Emotion in natural language texts and other media are gaining ground under the umbrella of subjectivity analysis and affect computing. The reason may be the huge amount of available text data in the Social Web in the forms of news, reviews, blogs, chats and even twitter. Though Sentiment analysis from natural language text is a multifaceted and multidisciplinary problem, in general, the term âsentimentâ is used in reference to the automatic analysis of evaluative text. Not only the identification of positive or negative polarity of such evaluative text, research to develop devices that recognize human affect, display and model emotions from textual contents are also being carried out. Techniques and methodologies from Artificial Intelligence play important roles in these tasks.Â
The main four aspects of the sentiment analysis problem are Object identification, Feature extraction, Orientation classification and Integration. The existing reported solutions or available systems are still far from perfect or fail to meet the satisfaction level of the end users. The main issue may be that there are many conceptual rules that govern sentiment and there are even more clues (possibly unlimited) that can convey these concepts from realization to verbalization of a human being. Human psychology may provide the unrevealed clues and govern the sentiment realization. Human psychology relates to social, cultural, behavioral and environmental aspects of civilization.
In the present scenario we need constant research endeavors to reveal and incorporate the human psychological knowledge into machines in the best possible ways. The important issues that need attention include how various psychological phenomena can be explained in computational terms and which AI concepts and computer modeling methodologies will prove most useful from the psychologist's point of view.Â
In addition to Question Answering or Information Retrieval systems, Topic-sentiment analysis can be applied as a new research method for mass opinion estimation (e.g., reliability, validity, sample bias), psychiatric treatment, corporate reputation measurement, political orientation categorization, stock market prediction, customer preference study, public opinion study and so on.Â
In recent times, regular research papers continue to be published in reputed conferences like ACL, EMNLP or COLING. There has been an increasing number of efforts in shared tasks such as , , since 2006 and relevant since 6th NTCIR aimed to focus on different issues of opinion and emotion analysis. Several communities from sentiment analysis have engaged themselves to conduct relevant conferences, e.g., and workshops such as â, â, , , , , and so on.
This workshop aims to bring together the researchers in multiple disciplines such as computer science, psychology, cognitive science, social science and many more who are interested in developing next generation machines that can recognize and respond to the sentimental states of the human users and serve the society. The workshop will consist of a set of invited talks and presentations of technical papers that will be selected after peer review from the submissions received.